Elk/Xlib Reference Manual

Oliver Laumann

July 19, 1992

Elk/Xlib Reference Manual

Oliver Laumann

1. Introduction

This document provides a list of the functions, special forms, and variables exported by the
Elk Scheme/Xlib integration. Most of the functions are directly equivalent to a function of the
Xlib C library, so that the description need not be repeated. In such cases, only the name of the
corresponding Xlib function is mentioned. Thus, you should have the Xlib — C Language X
Interface manual within reach when using this reference manual.

The functions listed in this document can be loaded by evaluating the expression
(require ’"x1ib).
in the interpreter’s top level or in a Scheme program.

The types of arguments of the procedures listed below are not described when they are obvi-
ous from the context or from the name. For instance, an argument named window is always of
type window, an argument named atom is an object of type atom, etc. Arguments the names of
which end in “?” are always of type boolean.

If a function returns several items of the same type (for instance, a list of windows), the return
value is a vector of objects of this type. If a function returns a collection of items of different
types or of different semantics, the return value is a list of objects (or a pair). In this case,
multiple-value-bind can be used to bind variables to the return values.

In the following, each description of a procedure, special form, or variable lists the kind of
object in boldface. Here, procedure denotes either a primitive procedure or a compound pro-
cedure, syntax denotes a special form or a macro, and variable denotes a global variable that has
some initial value and can be re-assigned a new value by the user (by means of set! or fluid-let).

2. Display Functions

(display? x) procedure

Returns #t iff x is an object of type display.

(open-display . name-of-display) procedure

See XOpenDisplay. name-of-display is a string or a symbol. If no name is specified, a NULL
name will be passed to XOpenDisplay.

(close-display display) procedure
See XCloseDisplay. Finalizes all objects associated with the display, then closes the display.

(display-default-root-window display) procedure
(display-root-window display) procedure

See XDefaultRootWindow.

(display-default-colormap display) procedure
(display-colormap display) procedure

See XDefaultColormap. Returns the default colormap of the display’s default screen.

(display-default-gcontext display) procedure
See XDefaultGC. Returns the default graphics context of the display’s default screen.

(display-default-depth display) procedure
See XDefaultDepth. Returns the default depth of the display’s default screen.

(display-default-screen-number display) procedure

See XDefaultScreen. Returns an integer.

(display-cells display screen-number) procedure

See XDisplayCells. Returns an integer.

(display-planes display screen-number) procedure

See XDisplayPlanes. Returns an integer.

(display-string display) procedure
See XDisplayString. Returns a string.

(display-vendor display) procedure

See XServerVendor, XVendorRelease. Returns a pair; the car is a string (the vendor
identification), and the cdr is an integer (the vendor release number).

(display-protocol-version display) procedure

See XProtocolVersion, XProtocolRevision. Returns a pair of integers (the X protocol’s major and
minor version numbers).

(display-screen-count display) procedure

See XScreenCount. Returns an integer.

(display-image-byte-order display)

See XImageByteOrder. Returns a symbol (1sb-first or msb-first).

(display-bitmap-unit display)

See XBitmapUnit. Returns an integer.

(display-bitmap-bit-order display)

See XBitmapBitOrder. Returns a symbol (Lsb-first or msb-first).

(display-bitmap-pad display)
See XBitmapPad. Returns an integer.

(display-width display)
(display-height display)

procedure

procedure

procedure

procedure

procedure
procedure

See XDisplayWidth, XDisplayHeight. Returns the width/height of the display’s default screen.

(display-width-mm display)
(display-height-mm display)

procedure
procedure

See XDisplayWidthMM, XDisplayHeightMM. Returns the width/height of the display’s default

screen in millimeters.

(display-motion-buffer-size display)
See XDisplayMotionBufferSize. Returns an integer.

(display-flush-output display)
See XFlush.

(display-wait-output display discard-events?)
See XSync.

(no-op display)
See XNoOp.

(list-depths display screen-number)

See XListDepths. Returns a vector of integers.

(list-pixmap-formats display)

procedure

procedure

procedure

procedure

procedure

procedure

See XListPixmapFormats. Returns a vector of lists of three integers (depth, bits per pixel, and

scanline pad).

(set-after-function! display procedure) procedure

See XSetAfterFunction. Returns the old after function. If procedure is #f, the current after func-
tion is disassociated from the display.

(after-function display) procedure

Returns the after function currently associated with the given display (#f if there is none).

(synchronize display) procedure

Sets the display’s after function to display-wait-output.
3. Window Functions

(window? x) procedure

Returns #t iff x is an object of type window.

(drawable? x) procedure

Returns #t iff x is a “drawable” (window or pixmap).

(window-display window) procedure

Returns the display associated with the window.

(window-unique-id window) procedure

Returns a small integer uniquely identifying the given window.

(create-window . args) procedure
See XCreateWindow. This function is used to create a new window.

The number of arguments must be even. The 1st, 3rd, etc. argument is the name (a symbol) of an
attribute to be set when the window is created, the 2nd, 4th, etc. argument is the corresponding
value. The attributes can be specified in any order.

Attributes are x, y, width, height, border (each of which has an integer value), parent (the parent
window), and all attributes that can be set by means of the set-window-attribute! functions
below except sibling and stack-mode. The attributes parent, width, and height are mandatory.
The default for x and y is 0, the default for border is 2.

(set-window-x! window value) procedure
(set-window-y! window value) procedure
(set-window-width! window value) procedure
(set-window-height! window value) procedure

(set-window-border-width! window value) procedure

(set-window-sibling! window value) procedure
(set-window-stack-mode! window value) procedure
(set-window-background-pixmap! window value) procedure
(set-window-background-pixel! window value) procedure
(set-window-border-pixmap! window value) procedure
(set-window-border-pixel! window value) procedure
(set-window-bit-gravity! window value) procedure
(set-window-gravity! window value) procedure
(set-window-backing-store! window value) procedure
(set-window-backing-planes! window value) procedure
(set-window-backing-pixel! window value) procedure
(set-window-save-under! window value) procedure
(set-window-event-mask! window value) procedure
(set-window-do-not-propagate-mask! window value) procedure
(set-window-override-redirect! window value) procedure
(set-window-colormap! window value) procedure
(set-window-cursor! window value) procedure

See XConfigureWindow, XChangeWindowAttributes. Set the sibling window, stacking mode,
background pixmap, background pixel, border pixel, cursor, and other attributes (see the
window- functions below) of the specified window.

The stacking mode is a symbol (above, below, top—-if, bottom-if, opposite). The
value argument to set-window-sibling! must be a window, set-window-background-pixmap!
expects a pixmap, set-window-background-pixel! and set-window-border-pixel! expect a pixel,
and set-window-cursor! expects a cursor argument. For the types of the value argument of the
other functions see the return values of the window- functions below.

(window-x window) procedure
(window-y window) procedure
(window-width window) procedure
(window-height window) procedure
(window-border-width window) procedure
(window-depth window) procedure
(window-visual window) procedure
(window-root window) procedure
(window-class window) procedure
(window-bit-gravity window) procedure
(window-gravity window) procedure
(window-backing-store window) procedure
(window-backing-planes window) procedure
(window-backing-pixel window) procedure
(window-save-under window) procedure

(window-colormap window) procedure

(window-map-installed window) procedure
(window-map-state window) procedure
(window-all-event-masks window) procedure
(window-your-event-mask window) procedure
(window-do-not-propagate-mask window) procedure
(window-override-redirect window) procedure
(window-screen window) procedure

See XGetWindowAttributes. Returns the x and y coordinates, width, height, border width, depth,
visual, root window, class, bit gravity, window gravity, backing store availability, backing planes,
backing pixel, save under availability, colormap, colormap installation information, map state,
global event mask, local event mask, “do-not-propagate” mask, override redirect attribute, and
screen of the specified window.

window-visual and window-screen always return the empty list in the current release of the
software. window-root returns a window. window-class returns a symbol (input-output,
input-only). window-bit-gravity returns a symbol (forget, north-west, north,
north-east, west, center, east, south-west, south, south-east,
static). window-gravity returns a symbol (same as window-bit-gravity with unmap instead
of forget). window-backing-store returns a symbol (not-useful, when-mapped,
always). window-backing-planes and window-backing-pixel return a pixel. window-save-
under, window-map-installed and window-override-redirect return #t or #f. window-colormap
returns a colormap. window-map-state returns a symbol (unmapped, unviewable, view-
able). window-all-event-masks, window-your-event-mask, and window-do-not-propagate-mask
return a list of symbols (event mask names such as enter-window, pointer-motion,
etc.). All other functions return an integer.

(drawable-root drawable) procedure
(drawable-x drawable) procedure
(drawable-y drawable) procedure
(drawable-width drawable) procedure
(drawable-height drawable) procedure
(drawable-border-width drawable) procedure
(drawable-depth drawable) procedure

See XGetGeometry. Returns the root window, x and y coordinates, width, height, border width,
and depth of the specified drawable. drawable-root returns a window, all other functions return
an integer.

(map-window window) procedure
See XMapWindow.
(unmap-window window) procedure

See XUnmapWindow.

(destroy-window window) procedure
See XDestroyWindow.
(destroy-subwindows window) procedure

See XDestroySubwindows.

(map-subwindows window) procedure
See XMapSubwindows.

(unmap-subwindows window) procedure
See XUnmapSubwindows.

(circulate-subwindows window direction) procedure

See XCirculateSubwindows. direction is a symbol (raise—-lowest or lower—highest).

(clear-window window) procedure

Performs a clear-area on the entire window.

(raise-window window) procedure
See XRaiseWindow.
(lower-window window) procedure

See XLowerWindow.

(restack-windows list-of-windows) procedure
See XRestackWindows.
(query-tree window) procedure

See XQueryTree. Returns a list of three elements: root window, parent window, and children (a
vector of windows).

(translate-coordinates src-window x y dst-window) procedure

See XTranslateCoordinates. Returns a list of three elements: destination x and y, and child win-
dow.

(query-pointer window) procedure

See XQueryPointer. Returns a list of eight elements: x and y, a boolean indicating whether the
pointer is on the same screen as the specified window, the root window, the root window’s x and
y coordinates, the child window, and a list of modifier names (see grab-button below).

-8-

4. Window Property and Selection Functions

(atom? x) procedure

Returns #t iff x is an object of type atom.

(make-atom value) procedure

Returns an atom with the given value. value is an integer.

(intern-atom display name) procedure

See XInternAtom. name is a string or a symbol. The atom is created if it does not yet exist.

(find-atom display name) procedure

See XInternAtom. name is a string or a symbol. If the atom does not exist, the symbol none is
returned.

(atom-name display atom) procedure

See XGetAtomName. Returns a string.

(list-properties window) procedure

See XListProperties. Returns a vector of atoms.

(get-property window property request-type offset length delete ?) procedure

See XGetWindowProperty. property is an object of type atom. request-type is an atom or #f in
which case AnyPropertyType will be used. offset and length are integers. An error is signaled if
XGetWindowProperty fails.

get-property returns a list of four items: the “actual type” (an atom), the format (an integer), the
data (if any, the empty list otherwise), and the number of bytes left (an integer).

The data returned is either a string (if the format indicates 8-bit data) or a vector of integers.

(change-property window property type format mode data) procedure

See XChangeProperty. property and type are atoms. format is an integer (8, 16, or 32). If for-
mat is 8 data must be a string, otherwise a vector of integers of the appropriate size. An error is
signaled if the value of format is invalid or if data holds an integer that exceeds the size indicated
by format. mode is a symbol (replace, prepend, or append).

(delete-property window property) procedure

See XDeleteProperty.

-9.

(rotate-properties window vector-of-atoms delta) procedure

See XRotateWindowProperties. delta is the amount to rotate (an integer).

(set-selection-owner! display selection owner time) procedure

See XSetSelectionOwner. selection is an atom; owner is a window; time is an integer or the sym-
bol now (for CurrentTime).

(selection-owner display selection) procedure

See XGetSelectionOwner.

(convert-selection selection target property requestor-window time) procedure

See XConvertSelection. selection and target are atoms; property is an atom or the symbol

none.
5. Colormap Functions

(color? x) procedure

Returns #t iff x is an object of type color.

(make-color r g b) procedure

Returns an object of type color with the specified RGB components. r, g, and b are reals in the
range 0.0 to 1.0.

(color-rgh-values color) procedure

Returns a list of three elements, the RGB components of the given color (see make-color above).

(query-color colormap pixel) procedure
See XQueryColor.
(query-colors colormap pixels) procedure

See XQueryColors. pixels is a vector of pixels. Returns a vector of colors of the same size as
pixels.

(lookup-color colormap color-name) procedure

See XLookupColor. color-name is a string or a symbol. Returns a pair of colors.

(colormap? x) procedure

Returns #t iff x is an object of type colormap.

-10 -

(colormap-display colormap)

Returns the display associated with the given colormap.

(free-colormap colormap)

See XFreeColormap.
6. Pixel Functions

(pixel? x)

Returns #t iff x is an object of type pixel.

(pixel-value pixel)

Returns the value of the pixel as an unsigned integer.

(black-pixel display)
(white-pixel display)

procedure

procedure

procedure

procedure

procedure
procedure

See XBlackPixel, XWhitePixel. Returns the black/white pixel of the display’s default screen.

7. Pixmap Functions

(pixmap? x)

Returns #t iff x is an object of type pixmap.

(pixmap-display pixmap)

Returns the display associated with the pixmap.

(free-pixmap pixmap)

See XFreePixmap.

(create-pixmap drawable width height depth)
See XCreatePixmap.

(create-bitmap-from-data window data width height)

procedure

procedure

procedure

procedure

procedure

See XCreateBitmapFromData. data is a string. (* width height) must not exceed the

number of bits in string.

(create-pixmap-from-bitmap-data win data width height foregrnd backgrnd depth) procedure

See XCreatePixmapFromBitmapData. data is a string.

exceed the number of bits in string.

width height)

must not

-11 -

(read-bitmap-file drawable filename) procedure

See XReadBitmapFile. filename is a string or a symbol. If XReadBitmapFile signals an error,
read-bitmap-file returns a symbol (open—-failed, file—-invalid, or no—memory). If it
succeeds, read-bitmap-file returns a list of five elements: the bitmap (an object of type pixmap),
the width and height of the bitmap, and the x and y coordinates of the hotspot.

(write-bitmap-file filename pixmap width height x-hot y-hot) procedure

See XWriteBitmapFile. filename is a string or a symbol. x-hot and y-hot are optional (-1 is used
if they are omitted), but either both or none of them must be given. write-bitmap-file returns a

symbol (success, open-failed, file-invalid, or no-memory).
8. Graphics Context Functions

(gcontext? x) procedure

Returns #t iff x is an object of type gcontext.

(gcontext-display gcontext) procedure

Returns the display associated with the given GC.

(create-gcontext . args) procedure
See XCreateGC. This function is used to create a new GC.

The number of arguments must be even. The 1st, 3rd, etc. argument is the name (a symbol) of an
attribute to be set when the graphics context is created, the 2nd, 4th, etc. argument is the
corresponding value. The attributes can be specified in any order.

Attributes are window (mandatory) and all the attributes that can be set by the set-
gcontext—arttribute! functions below.

(copy-gcontext gcontext window) procedure

See XCopyGC. Returns a copy of gcontext (associated with the specified window).

(free-gcontext gcontext) procedure
See XFreeGC.
(query-best-size display width height shape) procedure

See XQueryBestSize. shape is a symbol (cursor, tile, or stipple). Returns a pair of
integers (result width and result height).

(query-best-cursor display width height) procedure

-12 -

(query-best-tile display width height) procedure
(query-best-stipple display width height) procedure

See XQueryBestSize. Invokes query-best-size with the given arguments and a shape of cursor,
tile,or stipple, respectively.

(gcontext-function gcontext) procedure
(gcontext-plane-mask gcontext) procedure
(gcontext-foreground gcontext) procedure
(gcontext-background gcontext) procedure
(gcontext-line-width gcontext) procedure
(gcontext-line-style gcontext) procedure
(gcontext-cap-style gcontext) procedure
(gcontext-join-style gcontext) procedure
(gcontext-fill-style gcontext) procedure
(gcontext-fill-rule gcontext) procedure
(gcontext-arc-mode gcontext) procedure
(gcontext-tile gcontext) procedure
(gcontext-stipple gcontext) procedure
(gcontext-ts-x gcontext) procedure
(gcontext-ts-y gcontext) procedure
(gcontext-subwindow-mode gcontext) procedure
(gcontext-exposures gcontext) procedure
(gcontext-clip-x gcontext) procedure
(gcontext-clip-y gcontext) procedure
(gcontext-dash-offset gcontexr) procedure

See XGetGCValues. Returns the logical operation, plane mask, foreground and background pixel
value, line width and style, cap and join style, fill style and rule, arc mode, tiling and stippling
pixmap, tiling x- and y-origin, subwindow mode, clipping x- and y-origin, and dashed line infor-
mation of the specified graphics context.

gcontext-function returns a symbol (clear, and, and-reverse, copy, and-inverted,
no-op, Xor, or, nor, equiv, invert, or-reverse, copy-inverted, nand, or
set). gcontext-plane-mask, gcontext-foreground, and gcontext-background return a pixel.
geontext-tile and gcontext-stipple return a pixmap. The line style is a symbol (solid, dash,
double—-dash); the cap style is a symbol (not-last, butt, round, projecting); the
join style is a symbol (miter, round, bevel); the fill style is a symbol (solid, tiled,
stippled, opaque-stippled); the fill rule is a symbol (even—-odd, winding); the arc
mode is a symbol (chord, pie-slice); the subwindow-mode is a symbol (clip-by-
children, include-inferiors). gcontext-exposures returns a boolean. All other func-
tions return an integer.

(set-gcontext-function! gcontext value) procedure

-13-

(set-gcontext-plane-mask! gcontext value) procedure
(set-gcontext-foreground! gcontext value) procedure
(set-gcontext-background! gcontext value) procedure
(set-gcontext-line-width! gcontext value) procedure
(set-gcontext-line-style! gcontext value) procedure
(set-gcontext-cap-style! gcontext value) procedure
(set-gcontext-join-style! gcontext value) procedure
(set-gcontext-fill-style! gcontext value) procedure
(set-gcontext-fill-rule! gcontext value) procedure
(set-gcontext-arc-mode! gcontext value) procedure
(set-gcontext-tile! gcontext value) procedure
(set-gcontext-stipple! gcontext value) procedure
(set-gcontext-ts-x! gcontext value) procedure
(set-gcontext-ts-y! gcontext value) procedure
(set-gcontext-font! gcontext value) procedure
(set-gcontext-subwindow-mode! gcontext value) procedure
(set-gcontext-exposures! gcontext value) procedure
(set-gcontext-clip-x! gcontext value) procedure
(set-gcontext-clip-y! gcontext value) procedure
(set-gcontext-clip-mask! gcontext value) procedure
(set-gcontext-dash-offset! gcontext value) procedure

See XChangeGC. Sets the logical operation, plane mask, foreground and background pixel
value, line width and style, cap and join style, fill style and rule, arc mode, tiling and stippling
pixmap, tiling x- and y-origin, font, subwindow mode, clipping x- and y-origin, clipping bitmap,
and dashed line information for the specified graphics context.

The value argument to set-gcontext-font! is a font, and the value argument to set-gcontext-clip-
mask! is a pixmap. For the types of the value argument of the other functions see the return
values of the gcontext- functions above.

(set-gcontext-clip-rectangles! gcontext x y rectangles ordering) procedure

See XSetClipRectangles. x and y are integers (the coordinates of the clip-mask origin). rectan-
gles is a vector of lists of four integers (x, y, width, and height of each rectangle). ordering is a
symbol (unsorted, y-sorted, yx-sorted, or yx—-banded).

(set-gcontext-dashlist! gcontext dash-offset dash-list) procedure

See XSetDashes. dash-offset is an integer. dash-list is a vector of integers between 0 and 255.
9. Graphics Functions

(clear-area window x y width height exposures?) procedure
See XClearArea.

-14 -

(copy-area src-drawable gcontext src-x src-y width height dst-drawable dst-x dst-y) procedure

See XCopyArea.

(copy-plane src-drawable gcontext plane src-x src-y width height dst-drawable dst-x dprogedure

See XCopyPlane. plane is an integer. An error is signaled unless exactly one bit is set in plane.

(draw-point drawable gcontext x y) procedure
See XDrawPoint.
(draw-points drawable gcontext vector-of-points relative?) procedure

See XDrawPoints. vector-of-points is a vector of pairs consisting of two integers (the x and y
coordinates). If relative? is #t, CoordModePrevious is passed to XDrawPoints, otherwise Coord-

ModeOrigin is used.

(draw-line drawable gcontext x1 yl x2 y2) procedure
See XDrawLine.

(draw-lines drawable gcontext vector-of-points relative?) procedure

See XDrawLines. See draw-points above.

(draw-segments drawable gcontext vector-of-points) procedure

See XDrawSegments. vector-of-points is a vector of lists of four integers (x1, y1, x2, and y2).

(draw-rectangle drawable gcontext x y width height) procedure
See XDrawRectangle.

(fill-rectangle drawable gcontext x y width height) procedure
See XFillRectangle.

(draw-rectangles drawable gcontext vector-of-rectangles) procedure

See XDrawRectangles. vector-of-rectangles is a vector of lists of four integers (x, y, width, and
height of each rectangle).

(fill-rectangles drawable gcontext vector-of-rectangles) procedure

See XFillRectangles. See draw-rectangles above.

(draw-arc drawable gcontext x y width height anglel angle?) procedure
See XDrawArec.

-15 -

(fill-arc drawable gcontext x y width height anglel angle2) procedure
See XFillArc.
(draw-arcs drawable gcontext vector-of-data) procedure

See XDrawArcs. vector-of-data is a vector of lists of six integers (x, y, width, height, anglel, and
angle2).

(fill-arcs drawable gcontext vector-of-data) procedure

See XFillArcs. See draw-arcs above.

(fill-polygon drawable gcontext vector-of-points relative? shape) procedure

See XFillPolygon. See draw-points above. shape is a symbol (complex, non-convex, oOr

convex).
10. Font Functions

(font? x) procedure

Returns #t iff x is an object of type font.

(font-display) procedure

Returns the display associated with the given font.

(open-font display font-name) procedure

See XLoadQueryFont. font-name is a string or a symbol.

(close-font font) procedure
See XUnloadFont.
(font-name font) procedure

Returns the name of the specified font (a string) or #f if the name could not be determined (e.g.
when the font has been obtained by a call to gcontext-font).

(gcontext-font gcontext) procedure

Calls XQueryFont with the GC obtained by XGContextFromGC. Only a limited number of func-
tions can be applied to a font returned by gcontext-font, since it has neither a name nor a font-ID.

(list-font-names display pattern) procedure

See XListFonts. pattern is a string or a symbol. Returns a vector of font names (strings).

-16 -

(list-fonts display pattern) procedure

See XListFontsWithlnfo. pattern is a string or a symbol. Returns a vector of fonts. These fonts
are “pseudo fonts” which do not have a font-ID. A pseudo font is loaded automatically and
turned into a “real” font the first time it is passed to a function that makes use of the font-ID.

(font-direction fonr) procedure
(font-min-byte2 font) procedure
(font-max-byte2 font) procedure
(font-min-bytel font) procedure
(font-max-bytel font) procedure
(font-all-chars-exist? fonr) procedure
(font-default-char font) procedure
(font-ascent fonr) procedure
(font-descent font) procedure

These functions return the font direction as a symbol (left-to-right or right-to-
left), the first and last character (as an integer), the first and last row (integer), an indication
whether all characters have non-zero size (boolean), the default character (integer), and the ascent
and descent (integer) of the specified font.

(char-rbearing font index) procedure
(char-lbearing font index) procedure
(char-width font index) procedure
(char-ascent font index) procedure
(char-descent font index) procedure

These functions return the metrics of the character specified by the integer index of the given
font. Each function returns an integer. font can be a 1-byte as well as a 2-byte font.

(max-char-lbearing font) procedure
(max-char-rbearing fonr) procedure
(max-char-width fonr) procedure
(max-char-ascent font) procedure
(max-char-descent font) procedure

These functions return the maximum metrics over all characters in the specified font. Each func-
tion returns an integer.

(min-char-lbearing font) procedure
(min-char-rbearing font) procedure
(min-char-width font) procedure
(min-char-ascent font) procedure
(min-char-descent font) procedure

These functions return the minimum metrics over all characters in the specified font. Each func-
tion returns an integer.

-17 -

(font-properties fonr) procedure

Returns a vector of font properties; each element of the vector is a pair consisting of the property
name (an atom) and an unsigned integer (the value of the property).

(font-property font property-name) procedure

Returns the value of the specified property associated with the specified font. property-name is a
string or a symbol.

(font-path display) procedure

See XGetFontPath. Returns the current font path as a vector of strings.

(set-font-path! display path) procedure

See XSetFontPath. path is a list; each element is a string or a symbol.
11. Text Metrics and Text Drawing Functions

(text-width font text formar) procedure

See XTextWidth, XTextWidthl6. format indicates whether 8-bit or 16-bit text is used; it is either
the symbol 1-byte or the symbol 2-byte. fext is a vector of integers; the integers must not
exceed the size indicated by the format.

(extents-lbearing font text format) procedure
(extents-rbearing font text format) procedure
(extents-width font text format) procedure
(extents-ascent font text format) procedure
(extents-descent font text format) procedure

See XTextExtents, XTextExtents16. These functions are used to compute the overall metrics of an
8-bit or 16-bit character string. Each function returns an integer. For the format of fext and for-
mat see text-width above.

(draw-image-text drawable gcontext x y text format) procedure

See XDrawlmageString, XDrawlImageString16. See text-width above.

(draw-poly-text drawable gcontext x y text format) procedure

See XDrawText, XDrawTextl6. See text-width above. text is a vector of integers with intermixed
objects of type font.

(translate-text string) procedure

Converts the string into a representation suitable as an argument to text-width, draw-image-text,
or draw-poly-text (a vector of integers obtained by applying char—>integer to the characters of
the string argument).

- 18 -

12. Cursor Functions

(cursor? x) procedure

Returns #t iff x is an object of type cursor.

(cursor-display cursor) procedure

Returns the display associated with the given cursor.

(free-cursor) procedure
See XFreeCursor.
(create-cursor src mask x y foreground background) procedure

See XCreatePixmapCursor. src and mask are pixmaps. mask can be the symbol none.

(create-glyph-cursor src src-char mask mask-char foreground background) procedure

See XCreateGlyphCursor. src and mask are fonts. mask can be the symbol none. The display
is obtained from src. src-char and mask-char are integers.

(create-font-cursor display src-char) procedure

See XCreateGlyphCursor. Calls create-glyph-cursor with the font named “cursor”, the specified
src-char, a mask-char of (1+ src-char), black foreground, and white background.

(recolor-cursor cursor foreground background) procedure

See XRecolorCursor

(define-cursor window cursor) procedure

Synonym for (set-window-cursor! window cursor).

(undefine-cursor window) procedure

Synonym for (set-window-cursor! window ’none).
13. Grab Functions

(grab-pointer window owner? events ptr-sync? kbd-sync? confine-to cursor time) procedure

See XGrabPointer. window and confine-to are windows. events is a list of symbols (event mask
names, such as enter-window, pointer-motion, etc.). ptr-sync? and kbd-sync? deter-
mine whether synchronous or asynchronous grab mode is to be used. fime is an integer or the
symbol now (for CurrentTime). grab-pointer returns a symbol (success, not-viewable,
already—-grabbed, frozen,or invalid-time).

-19-

(ungrab-pointer display time) procedure

See XUngrabPointer.

(grab-button win button mod owner? events ptr-sync? kbd-sync? confine-to cursor) procedure

See XGrabButton. button is a symbol (buttonl .. buttonb, or any-button). mod
(modifiers) is a list of symbols (shift, lock, control, modl .. mod5, buttonl ..
buttonb5,or any-modifier). For the other arguments see grab-pointer above.

(ungrab-button window button modifiers) procedure

See XUngrabButton. See grab-button above.

(change-active-pointer-grab display events cursor time) procedure

See XChangeActivePointerGrab. events is a list of symbols (event mask names, such as

enter-window, pointer—-motion, etc.).

(grab-keyboard window owner? pointer-sync? keyboard-sync? time) procedure

See XGrabKeyboard. For a description of the arguments and the return value see grab-pointer

above.

(ungrab-keyboard display time) procedure
See XUngrabKeyboard.

(grab-key window key modifiers owner? pointer-sync? keyboard-sync?) procedure

See XGrabKey. key is a keycode (an integer) or the symbol any. For the other arguments see
grab-pointer above.

(ungrab-key window key modifiers) procedure

See XUngrabKey. See grab-key above.

(allow-events display mode time) procedure
See XAllowEvents. mode is a symbol (async-pointer, sync-pointer, replay-
pointer, async-keyboard, sync-keyboard, replay-keyboard, async-both,
or sync—both).

(grab-server display) procedure
See XGrabServer.
(ungrab-server display) procedure

See XUngrabServer.

-20-

(with-server-grabbed display . body-forms) syntax

This macro performs a grab-server on the specified display, evaluates the body-forms in order,
and then ungrabs the server. The macro body is guarded by a dynamic-wind to ensure that the
ungrab-server is performed when a body-form calls a continuation created outside the macro, and
that it is grabbed again when the body is re-entered at a later point in time. with-server-grabbed
returns the value of the last body-form.

14. Window Manager Functions

(reparent-window window parent-window x y) procedure
See XReparentWindow.

(install-colormap colormap) procedure
See XiInstallColormap.

(uninstall-colormap colormap) procedure

See XUninstallColormap.

(list-installed-colormaps window) procedure

See XListInstalledColormaps. Returns a vector of colormaps.

(set-input-focus display window revert-to time) procedure

See XSetinputFocus. window can be the symbol pointer—-root. revert-to is a symbol
(none, pointer-root,or parent). time is an integer or the symbol now.

(input-focus display) procedure

See XGetlnputFocus. Returns a pair the car of which is a window, and the cdr is a symbol
(none, pointer-root,or parent).

(general-warp-pointer display dst-win dst-x dst-y src-win src-x src-y src-width src-hejgiogedure

See XWarpPointer.

(warp-pointer dst-window dst-x dst-y) procedure

See XWarpPointer. Invokes general-warp-pointer with the display associated with the dst-
window, the dst-window, dst-x, dst-y, a src-window of none, and zero source coordinates and
dimensions.

(warp-pointer-relative display x-offset y-offset) procedure

See XWarpPointer. Invokes general-warp-pointer with the specified display, a dst-window of
none, x-offset, y-offset, a src-window of none, and zero source coordinates and dimensions.

-21 -

(bell display . percent) procedure

See XBell. percent is an integer between -100 and 100. If percent is omitted, O is used.

(set-access-control display enable?) procedure
See XSetAccessControl.
(change-save-set window mode) procedure

See XChangeSaveSet. mode is a symbol (insert or delete).

(set-close-down-mode display mode) procedure

See XSetCloseDownMode. mode is a symbol (destroy-all, retain-permanent, or

retain-temporary).

(get-pointer-mapping display) procedure
See XGetPointerMapping. Returns a vector of 256 integers.

(set-pointer-mapping display mapping) procedure
See XSetPointerMapping. mapping is a vector of integers. Returns #t if XSetPointerMapping
succeeds, #f otherwise.

15. Event Handling Functions

(event-listen display wait?) procedure

See XPending, XPeekEvent. Returns the size of the display’s event queue. If wait? is true and
the event queue is empty, event-listen flushes the output buffer and blocks until an event is
received from the server.

(get-motion-events window from-time to-time) procedure

See XGetMotionEvents. from-time and to-time are integers or the symbol now. get-motion-
events returns a vector of lists of three elements: a time stamp (an integer or the symbol now),
and the x and y coordinates (integers).

(handle-events display discard? peek? . clauses) syntax

See XNextEvent, XPeekEvent, XIfEvent, XPeeklfEvent. handle-events is a special form. Each
clause is of the form (guard function); guard is either an event name (a symbol, e.g. key-
press or exposure), a list of event names, or the symbol else. handle-events gets the next
event from the specified display. Then the event type is matched against each event name in each
guard in order. When a match occurs, the corresponding function is invoked with the name of the
event being dispatched (a symbol) and other, event specific arguments (see below). When no
clause matches and an else clause is present, the function from this clause is invoked. handle-
events loops until a function returns a value not equal to #f in which case handle-events returns
this value.

-22 -

If discard? is true, unprocessed events (i. e. events for which no matching clause has been found)
are removed from the event queue, otherwise they are left in place. If peek? is true, processed
events are not removed from the event queue.

The following list gives all event specific arguments for each event type. The first argument is
always the event type (a symbol).

In the following list, arguments with names of the form something-window (or simply window)
are always of type window; arguments with names of the form something-atom (or simply atom)
are always of type atom. time is an integer or the symbol now. x, y, width, height, border-width,
Xx-root, y-root, count, major-code, minor-code, and keycode are integers. state is a list of symbols
(shift, lock, control, modl .. mod5, buttonl .. buttonb). button is one of the
symbols buttonl .. buttonb5, button-mask is a list of one or more of these symbols. cross-
mode is a symbol (normal, grab, ungrab). place is a symbol (top or bottom).

key-press, key-release:
window, root-window, sub-window, time, x, y, x-root, y-root, state, keycode, same-screen?.

button-press, button-release:

window, root-window, sub-window, time, x, y, x-root, y-root, state, button, same-screen?.
motion-notify:

window, root-window, sub-window, time, x, y, x-root, y-root, state, is-hint?, same-screen?.
enter-notify, leave-notify:

window, root-window, sub-window, time, x, y, X-root, y-root, cross-mode, cross-detail (one of

the symbols ancestor, virtual, inferior, nonlinear, nonlinear-

virtual), same-screen?, focus?, button-mask.

focus-in, focus-out:
window, cross-mode, focus-detail (one of the symbols ancestor, virtual, infe-
rior, nonlinear, nonlinear—-virtual, pointer, pointer—-root, none).
keymap-notify:
window, keymap (a string of length 32).
expose:
window, x, y, width, height, count.
graphics-expose:
window, x, y, width, height, count, major-code, minor-code.
no-expose:
window, major-code, minor-code.
visibility-notify:
window, visibility-state (one of the symbols unobscured, partially-obscured,
fully-obscured).

create-notify:

parent-window, window, x, y, width, height, border-width, override-redirect?.
destroy-notify:

event-window, window.

-23-

unmap-notify:
event-window, window, from-configure.
map-notify:
event-window, window, override-redirect.
map-request:
parent-window, window.
reparent-notify:
event-window, parent-window, window, x, y, override-redirect.
configure-notify:
event-window, window, x, y, width, height, border-width, above-window, override-redirect?.
configure-request:
parent-window, window, x, y, width, height, border-width, above-window, stack-mode (see
set-window-stack-mode! above), value-mask (an integer).
gravity-notify:
event-window, window, x, y.
resize-request:
window, width, height.

circulate-notify:
event-window, window, place.

circulate-request:
parent-window, window, place.
property-notify:
window, atom, time, property-state (one of the symbols new-value, deleted).

selection-clear:
window, selection-atom, time.

selection-request:

owner-window, requestor-window, selection-atom, target-atom, property-atom, time.

selection-notify:
requestor-window, selection-atom, target-atom, property-atom, time.

colormap-notify:
window, colormap, new?, colormap-installed?.

client-message:
window, message type (an atom), message data (a string of length 20, or a vector of 10 or 5
integer numbers, or, if the format field of the event is wrong, the format as a number).
mapping-notify:
window, request (one of the symbols modifier, keyboard, pointer), keycode,
count.

-4 -

16. Inter-Client Communication Functions

(iconify-window window screen-number) procedure
See XlIconifyWindow.

(withdraw-window window screen-number) procedure
See XWithdrawWindow.

(reconfigure-wm-window . args) procedure

See XReconfigureWMWindow.

For the format of the arguments see create-window above. Mandatory attributes are window and
screen-number (an integer). Optional attributes are x, y, width, height border-width (integers),
sibling (a window), and stack-mode (a symbol; one of above, below, top—-if, bottom-
if, opposite).

(get-text-property window atom) procedure

See XGetTextProperty. Returns a text property as a list of strings or #f if the specified property
does not exist.

(set-text-property! window value atom) procedure

See XSetTextProperty. value is a list holding the items of the text property (strings or symbols).

(wm-protocols window) procedure

See XGetWMProtocols. Returns a vector of atoms.

(set-wm-protocols! window protocols) procedure

See XSetWMProtocols. protocols is a vector of atoms.

(wm-name window) procedure

See XGetTextProperty. Returns the WM_NAME property as a list of strings or #f if it does not
exist.

(set-wm-name! window name) procedure

See XSetTextProperty. name is a list of strings or symbols.

(wm-icon-name window) procedure

See XGetTextProperty. Returns the WM_ICON_NAME property as a list of strings or #f if it
does not exist.

-25-

(set-wm-icon-name! window name) procedure

See XSetTextProperty. name is a list of strings or symbols.

(wm-client-machine window) procedure

See XGetTextProperty, XGetWMClientMachine. Returns the WM_CLIENT_MACHINE pro-
perty as a list of strings or #f if it does not exist.

(set-wm-client-machine! window value) procedure

See XSetTextProperty, XSetWMClientMachine. value is a list of strings or symbols.

(wm-class window) procedure

See XGetClassHint. Returns a pair (name and class) each component of which is either a string
or #f.

(set-wm-class! window name class) procedure

See XSetClassHint. name and class are strings or symbols.

(wm-command window) procedure

See XGetCommand (in X11 Release 4 or newer releases). Returns the value of the
WM_COMMAND property of the given window as a list of strings.

(set-wm-command! window command) procedure

See XSetCommand. command is a list; each element is either a string or a symbol.

(transient-for window) procedure

See XGetTransientForHint. Returns a window.

(set-transient-for! window property-window) procedure

See XSetTransientForHint.

(wm-normal-hints window) procedure

See XGetWMSizeHints. Returns a list of hints. Each element is set to the empty list if the
corresponding hint has not been set for the specified window.

The elements of the list correspond to the following hints (in this order): x, y, width, and height
(program specified); x, y, width and height (user specified); min-width and min-height; max-width
and max-height; width-inc and height-inc; min-aspect-x, min-aspect-y, max-aspect-x and max-
aspect-y; base-width and base-height; and gravity. All elements are integers except for the value
of gravity which is a symbol (see the window-gravity procedure above).

-26 -

(set-wm-normal-hints! . args) procedure

See XSetWMSizeHints. For the format of the arguments see create-window above. Attributes are
window (mandatory) and the names of the hints listed under wm-normal-hints above.

(wm-hints window) procedure

See XGetWMHints. Returns a list of hints. Each element is set to the empty list if the
corresponding hint has not been set for the specified window.

The elements of the list correspond to the following hints (in this order): input?, initial-state,
icon-pixmap, icon-window, icon-x, icon-y, icon-mask, and window-group. The value of input? is
a boolean. initial-state is a symbol (dont-care, normal, zoom, iconic, inactive).
The values of icon-pixmap and icon-mask are pixmaps. icon-window and window-group are win-
dows. icon-x and icon-y are integers.

(set-wm-hints! . args) procedure

See XSetWMHints. For the format of the arguments see create-window above. Attributes are
window (mandatory) and the names of the hints listed under wm-hints above.

(icon-sizes window) procedure

See XGetlconSizes. Returns a vector of lists of six integers (min-width, min-height, max-width,
max-height, width-inc, and height-inc).

(set-icon-sizes! window icon-sizes) procedure

See XSetlconSizes. icon-sizes is a vector of lists of six integers (see icon-sizes above).
17. Keyboard Utility Functions

(display-min-keycode display) procedure
(display-max-keycode display) procedure

Returns the minimum/maximum keycode (an integer) for the given display.

(display-keysyms-per-keycode display) procedure
Returns the number of keysyms per keycode for the given display.

(string—>keysym string) procedure

See XStringToKeysym. string is a string or a symbol. Returns an integer if XStringToKeysym
succeeds, #f otherwise.

(keysym—>string keysym) procedure

See XKeysymToString. keysym is an integer. Returns #f if XKeysymToString fails.

-27 -

(keycode—>keysym display keycode index) procedure
See XKeycodeToKeysym. keycode and index are integers.

(keysym—>keycode display keysym) procedure
See XKeysymToKeycode. keysym is an integer.

(lookup-string display keycode mask) procedure

See XLookupString. keycode is an integer. mask is a list of symbols (shift, lock, con-
trol, modl .. mod5, buttonl.. button5,or any-modifier).

(rebind-keysym display keysym modifiers string) procedure

See XRebindKeysym. keysym is an integer. modifiers is a vector of integers.

(refresh-keyboard-mapping window type) procedure

See XRefreshKeyboardMapping. type is a symbol (modifier, keyboard, or pointer).
Invokes XRefreshKeyboardMapping with a faked event structure holding the specified window
and request type.

18. Other Utility Functions

(xlib-release-4-or-later?) procedure

Returns always #t.

(xlib-release-5-or-later?) procedure

Returns #t iff the Xlib extension is linked together with the X11 Release 5 Xlib or later versions
of the Xlib.

(get-default display program option) procedure

See XGetDefault. program and option are strings or symbols. Returns a string of #f if the option
does not exist for the specified program.

(resource-manager-string display) procedure

See XResourceManagerString. Returns a string or #f if the RESOURCE_MANAGER property
does not exist on the root window.

(parse-geometry string) procedure

See XParseGeometry. Returns a list of six elements: two booleans indicating whether x or or y
are negative and four integers (x, y, width, and height). Each of the elements can be #f to indi-
cate that the respective value was not found in the string.

-28 -

(parse-color colormap string) procedure

See XParseColor. Returns an object of type color or #f if XParseColor fails.

(store-buffer display bytes buffer) procedure
See XStoreBuffer. bytes is a string; buffer is an integer between 0 and 7.

(store-bytes display bytes) procedure
See XStoreBytes. bytes is a string.

(fetch-buffer display buffer) procedure
See XFetchBuffer. buffer is an integer between 0 and 7. Returns a string.

(fetch-bytes display) procedure
See XFetchBytes. Returns a string.

(rotate-buffers display delta) procedure

See XRotateBuffers. delta is an integer (the amount to rotate the buffers).

(with object . body-forms) syntax

object must be a drawable, a graphics context, or a font. The body-forms are evaluated in order;
with returns the value of the last body-form.

Within the scope of the with, the first call to an accessor function accessing object (such as
window-attribute or font-attribute) causes the result of the corresponding Xlib function to
be retained in a cache; subsequent calls just return the value from the cache. Likewise, calls to
Xlib functions for mutator functions modifying object (such as set-window-—attribute!) are
delayed until exit of the with body or until an accessor function is called and the cached data for
this accessor function has been invalidated by the call to a mutator function.

19. Server Extension Functions

(list-extensions display) procedure

See XListExtensions. Returns a vector of strings.

(query-extension display name) procedure

See XQueryExtension. name is a string or a symbol. Returns a list of three elements: the major
opcode (an integer) or #f if the extension has no major opcode, the base event type code (an
integer) of #f if the extension has no additional event types, and the base error code (an integer)
of #f if the extension has no additional error codes. query-extension returns #f if the specified
extension is not present.

-29.

20. Error Handling

x-error-handler variable

See XSetErrorHandler. If an error event is received and the global variable x-error-handler is
bound to a compound procedure, this procedure is invoked with the following arguments: a
display, the serial number of the failed request (an integer), the error code (either an integer or
one of the symbols bad-request, bad-value, bad-window, bad-pixmap, bad-
atom, bad-cursor, bad-font, bad-match, bad-drawable, bad-access,
bad-alloc, bad-color, bad-gcontext, bad-id-choice, bad-name, bad-
length, or bad-implementation), the major and minor op-code of the failed request
(integers), and a resource-ID (an integer).

If an error event is received and this variable is not bound to a compound procedure, the Xlib
default error handler is invoked. The initial value of this variable is the empty list.

x-fatal-error-handler variable

See XSetlOErrorHandler. If a fatal I/O error occurs and the global variable x-fatal-error-handler
is bound to a compound procedure, this procedure is invoked with a display as argument. The
procedure must invoke exit. If a fatal error occurs and this variable is not bound to a compound
procedure, or if the procedure returns, the Xlib default fatal error handler is invoked and the inter-
preter terminates with an exit code of 1. The initial value of this variable is the empty list.

21. Interaction with the Garbage Collector

The Scheme garbage collector destroys objects of type colormap, cursor, display, font, gcon-
text, pixmap, or window that are not longer accessible from within the Scheme program. This is
done by invoking the function free-colormap, free-cursor, close-display, close-font, free-
gcontext, free-pixmap, or destroy-window, respectively, with the object to be destroyed as an
argument.

The garbage collector only destroys objects that have been created from with the Scheme pro-
gram (by functions like create-pixmap or open-display). Objects that have been obtained from
the Xlib through functions like display-default-colormap (and are owned by the Xlib internals),
are ignored by the garbage collector.

Programmers must make sure that an object is accessible during the object’s entire lifetime,
otherwise future runs of the garbage collector can result in undesired termination of the object.
One must be especially careful when results of functions that create new objects (such as create-
window) are ignored or assigned to local variables as in

(define dpy (open-display))
(define root (display-root-window dpy))

(do ((x 0 (+ x 10)) (y O (+y 10))) ((= x 50))
(let ((win
(create-window ’'parent root 'x x 'y y "width 20 ’"height 20)))

(manage-window win)))

-30 -

In this example, after termination of the do-loop, the garbage collector will destroy the newly
created windows, as they are not accessible from within the program. If this is not desired, the
windows could be put into a variable (for instance, be consed into a list) that is defined outside of
the body of the loop.

-31-

Index

A create-gcontext, 11

create-glyph-cursor, 18
after-function, 4 create-pixmap-from-bitmap-data, 10
allow-events, 19 create-pixmap, 10
atom-name, 8 create-window, 4, 24, 26
atom?, 8 cursor-display, 18

cursor?, 18
B

D
bell, 21
black-pixel, 10 define-cursor, 18

delete-property, 8
C destroy-subwindows, 7

destroy-window, 7
change-active-pointer-grab, 19 display-bitmap-bit-order, 3
change-property, 8 display-bitmap-pad, 3
change-save-set, 21 display-bitmap-unit, 3
char-ascent, 16 display-cells, 2
char-descent, 16 display-colormap, 2
char-lbearing, 16 display-default-colormap, 2
char-rbearing, 16 display-default-depth, 2
char-width, 16 display-default-gcontext, 2
circulate-subwindows, 7 display-default-root-window, 2
clear-area, 13 display-default-screen-number, 2
clear-window, 7 display-flush-output, 3
close-display, 2 display-height-mm, 3
close-font, 15 display-height, 3
color-rgb-values, 9 display-image-byte-order, 3
color?, 9 display-keysyms-per-keycode, 26
colormap-display, 10 display-max-keycode, 26
colormap?, 9 display-min-keycode, 26
convert-selection, 9 display-motion-buffer-size, 3
copy-area, 14 display-planes, 2
copy-gcontext, 11 display-protocol-version, 2
copy-plane, 14 display-root-window, 2
create-bitmap-from-data, 10 display-screen-count, 2
create-cursor, 18 display-string, 2

create-font-cursor, 18 display-vendor, 2

-32-

display-wait-output, 3
display-width-mm, 3
display-width, 3
display?, 1
draw-arc, 14
draw-arcs, 15
draw-image-text, 17
draw-line, 14
draw-lines, 14
draw-point, 14
draw-points, 14, 15
draw-poly-text, 17
draw-rectangle, 14
draw-rectangles, 14
draw-segments, 14
drawable-border-width, 6
drawable-depth, 6
drawable-height, 6
drawable-root, 6
drawable-width, 6
drawable-x, 6
drawable-y, 6
drawable?, 4

E

Event types:
button-press, 22
button-release, 22
circulate-notify, 23
circulate-request, 23
client-message, 23
colormap-notify, 23
configure-notify, 23
configure-request, 23
create-notify, 22
destroy-notify, 22
enter-notify, 22
expose, 22
focus-in, 22
focus-out, 22
graphics-expose, 22
gravity-notify, 23
key-press, 22

key-release, 22
keymap-notify, 22
leave-notify, 22
map-notify, 23
map-request, 23
mapping-notify, 23
motion-notify, 22
no-expose, 22
property-notify, 23
reparent-notify, 23
resize-request, 23
selection-clear, 23
selection-notify, 23
selection-request, 23
unmap-notify, 23
visibility-notify, 22
event-listen, 21
extents-ascent, 17
extents-descent, 17
extents-lbearing, 17
extents-rbearing, 17
extents-width, 17

F

fetch-buffer, 28
fetch-bytes, 28
fill-arc, 15

fill-arcs, 15
fill-polygon, 15
fill-rectangle, 14
fill-rectangles, 14
find-atom, 8
font-all-chars-exist?, 16
font-ascent, 16
font-default-char, 16
font-descent, 16
font-direction, 16
font-display, 15
font-max-bytel, 16
font-max-byte2, 16
font-min-bytel, 16
font-min-byte2, 16
font-name, 15

-33 -

font-path, 17
font-properties, 17
font-property, 17
font?, 15
free-colormap, 10
free-cursor, 18
free-gcontext, 11
free-pixmap, 10

G

garbage collector, 29
gcontext-arc-mode, 12
gcontext-background, 12
gcontext-cap-style, 12
gcontext-clip-x, 12
gcontext-clip-y, 12
gcontext-dash-offset, 12
gcontext-display, 11
gcontext-exposures, 12
gcontext-fill-rule, 12
gcontext-fill-style, 12
gcontext-font, 15
gcontext-foreground, 12
gcontext-function, 12
gcontext-join-style, 12
gcontext-line-style, 12
gcontext-line-width, 12
gcontext-plane-mask, 12
gcontext-stipple, 12
gcontext-subwindow-mode, 12
gcontext-tile, 12
gcontext-ts-x, 12
gcontext-ts-y, 12
gcontext?, 11
general-warp-pointer, 20
get-default, 27
get-motion-events, 21
get-pointer-mapping, 21
get-property, 8
get-text-property, 24
grab-button, 7, 19
grab-key, 19
grab-keyboard, 19

grab-pointer, 18, 19
grab-server, 19

H

handle-events, 21

icon-sizes, 26
iconify-window, 24
input-focus, 20
install-colormap, 20
intern-atom, 8

K

keycode—>keysym, 27
keysym—>keycode, 27
keysym—>string, 26

L

list-depths, 3
list-extensions, 28
list-font-names, 15
list-fonts, 16
list-installed-colormaps, 20
list-pixmap-formats, 3
list-properties, 8
lookup-color, 9
lookup-string, 27
lower-window, 7

M

make-atom, 8
make-color, 9
map-subwindows, 7
map-window, 6
max-char-ascent, 16
max-char-descent, 16
max-char-lbearing, 16
max-char-rbearing, 16

-34 -

max-char-width, 16 reconfigure-wm-window, 24
min-char-ascent, 16 refresh-keyboard-mapping, 27
min-char-descent, 16 reparent-window, 20
min-char-lbearing, 16 resource-manager-string, 27
min-char-rbearing, 16 restack-windows, 7
min-char-width, 16 rotate-buffers, 28
multiple-value-bind, 1 rotate-properties, 9

N S

no-op, 3 selection-owner, 9

set-access-control, 21
0] set-after-function!, 4

set-close-down-mode, 21

open-display, 1 set-font-path!, 17
open-font, 15 set-gcontext-arc-mode!, 13
set-gcontext-background!, 13
P set-gcontext-cap-style!, 13
set-gcontext-clip-mask!, 13
parse-color, 28 set-gcontext-clip-rectangles!, 13
parse-geometry, 27 set-gcontext-clip-x!, 13
pixel-value, 10 set-gcontext-clip-y!, 13
pixel?, 10 set-gcontext-dash-offset!, 13
pixmap-display, 10 set-gcontext-dashlist!, 13
pixmap?, 10 set-gcontext-exposures!, 13

set-gcontext-fill-rule!, 13
Q set-gcontext-fill-style!, 13
set-gcontext-font!, 13

query-best-cursor, 11 set-gcontext-foreground!, 13
query-best-size, 11 set-gcontext-function!, 12
query-best-stipple, 12 set-gcontext-join-style!, 13
query-best-tile, 12 set-gcontext-line-style!, 13
query-color, 9 set-gcontext-line-width!, 13
query-colors, 9 set-gcontext-plane-mask!, 13
query-extension, 28 set-gcontext-stipple!, 13
query-pointer, 7 set-gcontext-subwindow-mode!, 13
query-tree, 7 set-gcontext-tile!, 13
set-gcontext-ts-x!, 13
R set-gcontext-ts-y!, 13
set-icon-sizes!, 26
raise-window, 7 set-input-focus, 20
read-bitmap-file, 11 set-pointer-mapping, 21
rebind-keysym, 27 set-selection-owner!, 9

recolor-cursor, 18 set-text-property!, 24

-35-

set-transient-for!, 25
set-window-background-pixel!, 5
set-window-background-pixmap!, 5
set-window-backing-pixel!, §
set-window-backing-planes!, §
set-window-backing-store!, 5
set-window-bit-gravity!, §
set-window-border-pixel!, 5
set-window-border-pixmap!, §
set-window-border-width!, 4
set-window-colormap!, §
set-window-cursor!, §

set-window-do-not-propagate-mask!, 5

set-window-event-mask!, 5
set-window-gravity!, 5
set-window-height!, 4
set-window-override-redirect!, 5
set-window-save-under!, 5
set-window-sibling!, §
set-window-stack-mode!, 5
set-window-width!, 4
set-window-x!, 4
set-window-y!, 4
set-wm-class!, 25
set-wm-client-machine!, 25
set-wm-command!, 25
set-wm-hints!, 26
set-wm-icon-name!, 25
set-wm-name!, 24
set-wm-normal-hints!, 26
set-wm-protocols!, 24
store-buffer, 28
store-bytes, 28
string—>keysym, 26
synchronize, 4

T

text-width, 17
transient-for, 25
translate-coordinates, 7

translate-text, 17
U

undefine-cursor, 18
ungrab-button, 19
ungrab-key, 19
ungrab-keyboard, 19
ungrab-pointer, 19
ungrab-server, 19
uninstall-colormap, 20
unmap-subwindows, 7
unmap-window, 6

A\

warp-pointer-relative, 20
warp-pointer, 20
white-pixel, 10
window-all-event-masks, 6
window-backing-pixel, §
window-backing-planes, 5
window-backing-store, §
window-bit-gravity, 5
window-border-width, 5
window-class, §
window-colormap, S
window-depth, §
window-display, 4
window-do-not-propagate-mask, 6
window-gravity, 5, 25
window-height, §
window-map-installed, 6
window-map-state, 6
window-override-redirect, 6
window-root, §
window-save-under, 5
window-screen, 6
window-unique-id, 4
window-visual, §
window-width, 5
window-x, 5

window-y, 5§
window-your-event-mask, 6

-36-

window?, 4
with-server-grabbed, 20
with, 28
withdraw-window, 24
wm-class, 25
wm-client-machine, 25
wm-command, 25
wm-hints, 26
wm-icon-name, 24
wm-name, 24
wm-normal-hints, 25, 26
wm-protocols, 24
write-bitmap-file, 11

X

x-error-handler, 29
x-fatal-error-handler, 29
xlib-release-4-or-later?, 27
xlib-release-5-or-later?, 27
xlib, 1

Table of Contents

INETOAUCTION ettt ettt e et e s bt e e bt e e bt e e bt e e sateesabeesabeesbeeeneee 1
Display FUNCHONSoooiiiiiiiiiieeieee ettt st sttt st s 1
WiIndOW FUNCLONSeoiiiiiiiiiiiieiietece ettt ettt 4
Window Property and Selection FUNCHONScceooiiiiiiiriieiiieeieeeite et 8
ColormAap FUNCHOMNScccuiiiiiiiiiieeieeeieeete et ettt e et e st e et e e sbeeeaeeessbeessseesnsaesnseesnneesnsseennns 9
PIXEl FUNCHONS ...eoeiiiiiiiiieiiieee ettt st sttt st st st 10
PiXmap FUNCLIONS ...cccvviiiiiiiiiecieeeee ettt e st e s ta e et eessseessseesssaeanseesnseeensseennns 10
Graphics Context FUNCLIONSc.c.ooiiiiiiiiiie ittt st sttt s 11
Graphics FUNCHONS ...cc.eiiiiiiiiiiieie ettt sttt st st esbeesbeenaee s 13
FONE FUNCHIONS ..ottt ettt et ettt st e sate et e eaeas 15
Text Metrics and Text Drawing FUNCHONScociiiiiiiiiiiiiiiiniteeee e 17
CUISOT FUNCLIONS ...eiiiiiiiiiiiiiieteeeee ettt ettt et e et sab e e sbt e e sateesabeesbeeebaeenee 18
Grab FUNCHOMNSeiiiiiiiiiiiiiie ettt ettt et et e sttt e st e e sabeesabeesbeeesbaeesabeesaseas 18
Window Manager FUNCHIONScoceiviiiiiiiiiiiiiicieecececete ettt 20
Event Handling FUNCHONScccoiiiiiiiiiiiiieiieete ettt ettt 21
Inter-Client Communication FUNCHONSccceoviiriiriiriiiiiiiicnicntcetceeeeee et 24
Keyboard Utility FUNCHONSeeecuiiiiiieiieeiieesieeeciee ettt esie et e st e st e eteeseeeesneeesnseesnsees 26
Other Uity FUNCHONS ...cccuiieiiieiiieiieeieesieesee ettt e eiteesiteesteesteessbeessteesnsaesnssessnseesnseesnsens 27
Server EXtension FUNCHIONScocuoiiiiiiiiiiiiiieiettette ettt sttt 28
Error HANAIING ..ooouiiiiieiee ettt ettt st st s 29
Interaction with the Garbage COllECOrc..coirieriiririeieienrtee e 29

